Основание пирамиды - описанный вокруг основания конуса равносторонний треугольник. Центр вписанной в треугольник окружности лежит в точке пересечения биссектрис. Для правильного треугольника эта точка является и точкой пересечения медиан и высот.
Радиус окружности, вписанной в правильный треугольник, равен 1/3 его высоты.
Обозначим основание пирамиды АВС, вершину М ( совпадает с вершиной конуса).
Высота основания ВН=3r=30
АВ=ВН:sin60°=30:√3/2=60•2/√3=20√3
Формула площади боковой поверхности правильной пирамиды
S=p•h:2, т.е. произведение полупериметра на пофему.
По т.Пифагора апофема
МН=√(МО²+ОН²)=√(576+100)=26
р=0,5•3•20√3 =30√3
S=26•30√3=780√3
ответ:
формула площі трикутника за стороною та висотою
площа трикутника дорівнює половині добутку довжини сторони трикутника та довжини проведеної до цієї сторони висоти
s = 1 a · h
2
формула площі трикутника за трьома сторонами
формула герона
s = √p(p - a)(p - b)(p - c)
формула площі трикутника за двома сторонами і кутом між ними
площа трикутника дорівнює половині добутку двох його сторін помноженого на синус кута між ними.
s = 1 a · b · sin γ
2
формула площі трикутника за трьома сторонам і радіусом описаного кола
s = a · b · с
4r
формула площі трикутника за трьома сторонами і радіусом вписаного кола
площа трикутника дорівнює добутку півпериметра трикутника на радіус вписаного кола.
s = p · r
де s - площа трикутника,
a, b, c - довжини сторін трикутника,
h - висота трикутника,
γ - кут між сторонами a и b,
r - радіус вписаного кола,
r - радіус описаного кола,
p = a + b + c - півпериметр трикутника.
2
объяснение: