Объяснение: S=a*h/2.
1)
S треуг.=32*7/2=112 см².
16*h/2=112.
h=2*112/16=14 см. высота проведенна на сторону ВС.
2)
S ромба=d₁*d₂/2. диагонали ромба х см и 6х см.
х*6х/2=75.
6х²=150.
х²=25.
х=5 см. одна диагональ . Вторая диагональ 5*6=30 см.
3)
S трапеции=(а+в)/2)*h.
((а+19)/2))*8=104.
а+19=26 . после сокращения.
а=26-19=7см верхнее основание.
4)
Опустим высоту из тупого угла в 150° на нижнее основание.
Угол в этом Δ равен 150-90=60°(верхний угол)
Нижний угол 180-90-60=30°.
Катет, лежащий против угла в 30 град , равен половине гипотенузы
h =10/2=5 см.
S трап.=((7+13)/2))*5=10*5=50см²
Условие не совсем корректное. В равностороннем треугольнике нет большей или меньшей стороны, на то он и равносторонний.
В сети можно найти несколько вариантов похожих задач с разными данными.
Вариант 1.
Решаем задачу о равнобедренном треугольнике АВС (АВ=ВС) с боковой стороной, равной 4, и большей стороной АС.
АС=0,75•(4+4)=6 см
Биссектриса угла против основания равнобедренного треугольника совпадает с высотой и медианой, поэтому АМ=СМ и ∆ АВМ=∆ СВМ – прямоугольные.
Искомое расстояние - высота МН треугольника АВМ.
cos BAM=AM:AB=3/4
MH=AM•sin HAM
sin(HAM)=√(1-cos*)=√(1- 9/16)=√7/4
MH=3√7/4
——
Возможно, задача все же о разностороннем треугольнике.
Вариант 2.
В разностороннем треугольнике большая сторона составляет 75% суммы двух других. Точка М, принадлежащая этой стороне, является концом биссектрисы треугольника. Найдите расстояние от точки М до меньшей стороны треугольника, если меньшая высота треугольника равна 4 см.
Здесь условие корректное - есть и большая сторона, и меньшая.
АС=0,75•(AB+BC)
По свойству биссектрисы треугольника ВМ делит противоположную углу сторону АС в отношении прилежащих сторон.
АВ:ВС=АМ:СМ
АМ=0,75 АВ
Меньшая высота - высота, проведена к большей стороне. ВК=4
Из формулы площади треугольника
ВК•AM=MH•AB
НМ=ВК•AM:AB ⇒ НМ=ВК•0,75 АВ:AB
HM=4•0,75=3 см
В тр-ках АВС и ДВС MN и KF - средние линии. MN=KF=BC/2=14/2=7.
Р(МNFК)=2(NF+MN)=2(8+7)=30 - это ответ.
AD║NF, AD║KM, NF∈KMN, KM∈KMN.
Прямая, параллельная двум прямым лежащим в одной плоскости, параллельна всей плоскости, значит AD║KMN