по теореме Фалеса прямые проведеные через середину третьей стороны параллельные данным сторонам(прямым содержащим стороны) пройдут через середины этих сторон, т.е. поделят стороны а и b пополам
А значит полученные отрезки будут средними линиями треугольниками. По свойству средней линии треугольника их длины будут равны половинам соотвествующих сторон, т.е. a/2 и b/2.
Две другие стороны четырехугольника равны половинам соотвествующих сторон треугольника, т.е. a/2 и b/2.
Периметр четырехугольника сумма длин всех его сторон
поэтому периметр полученного четырехугольника равен
Если нарисуем этот вписанный треугольник и проведем высоту, радиус нарисуем от угла основания треугольника к центру окружности, получится, радиус делит высоту на неравные части так, что верхняя часть высоты равна радиусу, а нижнюю можно найти по теореме Пифагора. высота в равнобедренном треугольнике также и медиана, и бисектрисса, поэтому у нас есть прямоугольный треугольник с катетом 4 (тот который является частью основания) и гипотенузой 5. по т. Пифагора второй катет будет 3. (тот который является нижней частью высоты). так как верхняя часть высоты равна радиусу=5, то вся высота=5+3=8. Площадь можно найти по формуле 1/2*высоту*основание=1/2*8*8=4*8=32
по теореме Фалеса прямые проведеные через середину третьей стороны параллельные данным сторонам(прямым содержащим стороны) пройдут через середины этих сторон, т.е. поделят стороны а и b пополам
А значит полученные отрезки будут средними линиями треугольниками. По свойству средней линии треугольника их длины будут равны половинам соотвествующих сторон, т.е. a/2 и b/2.
Две другие стороны четырехугольника равны половинам соотвествующих сторон треугольника, т.е. a/2 и b/2.
Периметр четырехугольника сумма длин всех его сторон
поэтому периметр полученного четырехугольника равен
a/2+a/2+b/2+b/2=a+b
ответ: a+b