1) Так как M1B1 || BB1 значит можно провести плоскость β (по теореме, через параллельные прямые можно провести плоскость, и при том только одну). М є ММ1, М є АВ => M є β В є ВВ1, В є АВ => B є β
Следовательно, отрезок АВ будет лежать в β плоскости, потому как уже А и В точки его принадлежат плоскости. α пересекает β по M1B1, AB є β => A, M1, B1 лежат на общей прямой пересечения плоскостей α и β
2) ΔАММ1 ~ ΔABB1 по 3ему признаку (за 3мя углами). Следовательно, выполняется следующее отношение:
1)Если углы смежные, то их сумма равна 180 градусов. Пусть х(градусов)-1 угол, тогда 2 угол 3х(градусов), получим уравнение:
х+3х=180,
4х=180,
х=45
45(градусов)-1 угол, 45*3=135(градусов)-2 угол.
2)Пусть 1 часть угла равна х(градусов), тогда 1 угол 4х(град), 2 угол 5х(град), а их сумма 180, имеем:
4х+5х=180
9х=180
х=20
20*4=80(град)-1 угол
20*5=100(град)-2 угол
3) Пусть угол ВСД-х(град), тогда угол АСД-4х(град), т.к. углы смежные, то их сумма 180(град). Имеем уравнение:
х+4х=180
5х=180,
х=36
36(град)-угол ВСД
36*4=144(град)-угол АСД