Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
Пирамида усечена плоскостью, параллельной основанию.
Отсеченная пирамида подобна исходной 6:8 =3:4
Следовательно, части, заключенные между плоскостями, относятся к исходным 1:4.
Найдем высоту и апофему исходной пирамиды.
Правильная пирамида, в основании квадрат, вершина падает в центр основания.
Центр описанной окружности квадрата - пересечение диагоналей.
Диагонали квадрата перпендикулярны, равны, точкой пересечения (O) делятся пополам.
AO =AB sin45 =8*√2/2 =4√2
SO⊥(ABC), SAO=60
SO =AO tg60 =4√2*√3 =4√6 (исходная высота)
Боковые грани правильной пирамиды - равнобедренные треугольники.
Высота боковой грани - апофема - является медианой.
K - середина AB, KO=AB/2=4 (медиана из прямого угла)
SK =√(SO^2+KO^2) =4√(1+6) =4√7 (исходная апофема)
OO1/SO =KK1/SK =1/4
высота усеченной пирамиды OO1=√6 (см)
апофема усеченной пирамиды KK1=√7 (см)