в ромбе у нас углы будут по 2 равны,то есть 2 угла A и два угла Б.А+В=180,и их отношение 1:5,то есть всего 6 частей..отсюда 180:6,углы 30 и 150 градусов..площадь ромба длина стороны умножить на высоту..сторона у нас 6.найдем высоту..для этого проведем ее..и получим треугольник.у которого углы 90,30 и 60 градусов..теперь применим теорему,что против угла в 30 градусов лежит катет равный половине гипотенузы,этим катетом искомым и будет высота,а гипотенуза это сторона..то есть высота = половине от 6,то есть 3..теперь найдем площадь она равна 3*6=18
По свойству касательной и секущей ОК²=ОМ·ОN.
Пусть ОМ=х, тогда ОN=OM+MN=x+6,
4²=x(х+6),
х²+6х-4=0,
х1=-8, отрицательное значение не подходит,
х2=2.
ON=2+6=8 дм - это ответ.
Теперь докажем, что отрезок MN виден из точки К под большим углом.
Пусть радиус окружности около тр-ка КMN равен r.
На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r.
Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды.
∠MKN=α, ∠MPN=β.
Обратим внимание, что углы α и β - это половина градусной меры хорды.
MN=2R·sinβ ⇒ sinβ=MN/2R.
MN=2r·sinα ⇒ sinα=MN/2r.
Сравним синусы, предположив, что они равны.
MN/2R=MN/2r.
1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα.
Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°.
В этом диапазоне синус угла тем больше, чем больше его градусная мера,
значит α>β.
Доказано.