Вот решение и пояснения
Объяснение:В основании прямого параллелепипеда- параллелограмм АВCD.
Боковые ребра АА₁, ВВ₁, СС₁, DD₁ перпендикулярны плоскости АВСD.
Плоскость А₁СВ пересекает грань АА₁В₁В по прямой А₁В,
Так как грани АА₁В₁В и СС₁D₁D параллельны, то плоскость А₁СВ пересекает грань СС₁D₁D по прямой СD₁, параллельной А₁B.
Найдем линейный угол двугранного угла между плоскостью А₁ВСD₁ и плоскостью АВСD: проведем .
Треугольник А₁АК- прямоугольный.
так как прямая АА₁ перпендикулярна плоскости АВСD, значит АА₁ перпендикулярна любой прямой, лежащей в этой плоскости, в том числе и прямой АК.
Значит, А₁К-наклонная, АК-проекция наклонной на плоскость АВСD.
По теореме о трех перпендикулярах
Угол А₁KА - линейный угол двугранного угла.
Рассмотрим прямоугольный треугольник АВК: АВ=CD=2√3.
Угол АВК равен углу АDС. , тогда
В прямоугольном треугольнике катет, лежащий против угла в 30°, равен половине гипотенузы, значит ВК=√3. По теореме Пифагора АК=√((2√3)²-(√3)²)=√(12-3)=√9=3
Рассмотрим прямоугольный треугольник А₁АК: ,
АК=3.
Катет АК равен половине гипотенузы А₁К, значит гипотенуза А₁К=6.
По теореме Пифагора А₁А=√А₁К²-АК²=√(6²-3²)=√(36-9)=√27=3√3
ответ. Высота параллелепипеда равна 3√3.
пусть x - первое основание, тогда 4x - второе
d - первая диагональ, тогда 2d - вторая
a - искомый угол, h - высота трапеции
tg(a) = h / (4x-x) = h/(3x)
выразим высоту трапеции из прямоугольных треугольников
h^2 = (2d)^2 - (4x)^2 = d^2 - x^2
4d^2 - 16x^2 = d^2 - x^2
3d^2 = 15x^2
d^2 = 5x^2
h^2 = 5x^2 - x^2 = 4x^2
h = 2x
tg(a) = 2/3
a = arctg(2/3)