Для решения нужно вспомнить. что: Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому h²=9·16=144 h=12 Из треугольников. на которые высота поделила искходный треугольник, по теореме Пиагора найдем катеты: 1)9²+12²=225 √225=15 2)16²+12²=400 √400=20 Катеты равны 15см и 20 см, гипотенуза 9+16=25 см
Можно применить для решения другую теорему. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. Найдем гипотенузу: 9+16=25 см Пусть меньший катет будет х. Тогда его проекция - 9см: х²= 9·25=225 х=15 см Больший катет пусть будет у: у²=25·16=400 у=20 см
Полная поверхность s=2*pi*R^2+2piRh h=(S/2 -pi*R^2)/pi*R V=pi*R^2*h=pi*R^2(s/2-pi*R^2)/(pi*R)=R *s/2-pi*R^3 Для нахождения максимума функции обьема найдем нули производную V '=S/2-2*pi*R^2=0 s/2=2*pi*R^2 откуда R=+-sqrt(s/4pi) расставив корни производной на числовой оси можно убедится что в точке sqrt(s/4*pi) она меняет знак с + на - ,тогда в этом случае обьем будет наибольший то есть R=sqrt(s/4*pi)=sqrt(25/pi)=5/sqrt(pi) h=(100/2-pi*25/pi)/pi*5/sqrt(pi)=25/(5*sqrt(pi))=5/sqrt(pi) ответ:R=h=5/sqrt(pi)
∠B=140°
∠A=40°
Объяснение:
в параллелограмме противолежащие углы равны => ∠D=∠B=140°
∠A и ∠B - односторонние (BC║AD и BA - сек.), их сумма 180 градусов
∠A+∠B=180
∠A=180-∠B
∠A=180-140
∠A=40°