1) KMNB параллелограмм - верно, так как BN║KM по условию и MN║KB как основания трапеции.
2) KMNB ромб - неверно, так как MN ≠ KM по условию.
3) MNPB ромб - верно. MB║NP по условию, MN║BP как основания трапеции, значит MNPB - параллелограмм.
Смежные стороны у него равны (MN = NP по условию), значит MNPB - ромб.
4) ∠KBM = ∠MBN - неверно, так как в параллелограмме, который не является ромбом, диагонали не лежат на биссектрисах углов.
5) ∠MBN = ∠NBP - верно так как в ромбе диагонали лежат на биссектрисах его углов.
1. Треугольники АВС и MBN подобны по двум углам
(угол В- общий; Угол ВМN равен углу ВАС как соответственные при МN||АС и секущей АВ)
Треугольники подобны⇒сходственные стороны пропорциональны
АВ/ВМ=СВ/ВN ⇒AB•BN = СВ•ВМ
Б) АВ=АМ+МВ=6+8=14
МN/АС= ВМ/АВ; МN/21=8/14, МN=21·8/14=12 (см)
ответ МN=12см
2. Треугольники PQR и АВС подобны, т.к. стороны пропорциональны :
16/12=20/15=28/21=4/3
Площади подобных тругольников относятся как квадрат коэффициента подобия, т.е. как (4/3)²=16/9
площадь треугольника PQR относится к площади треугольника ABC
как 16 : 9
Подробнее - на -
АТ+ТВ = АВ
ТВ = R ---радиус окружности
выразим АТ через радиус...
из равнобедренного треугольника АОD, где AD = AB = AT+R
высота этого треугольника, проведенная к основанию, = АТ
из получившегося прямоугольного треугольника по т.Пифагора
(AD/2)^2 + AT^2 = R^2
AD^2 + 4AT^2 = 4R^2
(AT+R)^2 + 4AT^2 = 4R^2
AT^2 + 2AT*R + R^2 + 4AT^2 - 4R^2 = 0
5AT^2 + 2AT*R - 3R^2 = 0
D = (2R)^2 - 4*5*(-3R^2) = 4R^2 + 60R^2 = (8R)^2
AT = (-2R + 8R)/10
---отрицательный корень не рассматриваем (не имеет смысла...)
AT = 6R/10 = 3R/5
искомое отношение: AT/TB = (3R/5) / R = 3/5