В прямоугольном треугольнике высота, проведенная к гипотенузе, равна 8√3 и делит гипотенузу на отрезки, разность длин которых равна 16. Найдите площадь треугольника.
AB = BN, значит ΔABN равнобедренный, углы при основании равны: ∠BAN = ∠BNA = (180° - 30°)/2 = 75°
∠NAD = 90° - ∠BAN = 90° - 75° = 15°
2. ∠BAF = ∠DAF так как AF - биссектриса, ∠DAF = ∠BFA как накрест лежащие при пересечении AD║BC секущей AF, ⇒ ∠BAF = ∠BFA, треугольник BAF равнобедренный, АВ = BF = 2 см
∠CFE = ∠AFB как вертикальные ∠CEF = ∠BAF как накрест лежащие при пересечении AB║CD секущей АЕ, ∠AFB = ∠BAF как доказано выше, ⇒ ∠CFE = ∠CEF, ⇒ треугольник CFE равнобедренный, CF = CE = 3 см
АВ = 2 см ВС = 2 + 3 = 5 см Pabcd = (AB + BC)·2 = (2 + 5)·2 = 14 см
3. В треугольнике АВЕ АВ = 5 см, АЕ = 3 см, ВЕ = 4 см, значит это прямоугольный (египетский) треугольник, значит ВЕ - высота трапеции. ЕВСК - прямоугольник (ВЕ = СК как высоты трапеции, ВЕ║СК как перпендикуляры к одной прямой), ⇒ ЕК = ВС = 6 см.
ВС = 6 см AD = 3 + 6 + 1 = 10 см
Sabcd = (AD + BC)/2 · BE = (10 + 6)/2 · 4 = 32 см²
1) Так как M1B1 || BB1 значит можно провести плоскость β (по теореме, через параллельные прямые можно провести плоскость, и при том только одну). М є ММ1, М є АВ => M є β В є ВВ1, В є АВ => B є β
Следовательно, отрезок АВ будет лежать в β плоскости, потому как уже А и В точки его принадлежат плоскости. α пересекает β по M1B1, AB є β => A, M1, B1 лежат на общей прямой пересечения плоскостей α и β
2) ΔАММ1 ~ ΔABB1 по 3ему признаку (за 3мя углами). Следовательно, выполняется следующее отношение:
Высота из прямого угла (C) делит треугольник на два подобных друг другу и исходному.
△ACH~△ABC~△CBH
AH/CH=CH/BH => CH^2 =AH*BH => CH =√(AH*BH)
Доказали: Высота из прямого угла равна среднему пропорциональному проекций катетов на гипотенузу.
BH=x, AH=x+16, CH=8√3
CH^2 =AH*BH => 64*3 =x(x+16) => x^2 +16x -192 =0 => x=8 (x>0)
AB =8+8+16 =32
S(ABC) =1/2 AB*CH =1/2 *32 *8√3 =128√3