нужно 3. В треугольниках ABC и DEF ∠A=∠E и ∠C=∠D. CA=6 мм, AB=1,6 см, AC=2см, EF=1,2 см. И сторона BC больше стороны DF на 0,3 см. Найти длины этих сторон
треугольники подобны по трём углам, BC и EF - соответственные (пропорциональные) стороны, коэффициент подобия - 3. То-есть, маленький треугольник в 3 раза меньше большого - это и есть подобные треугольники. Значит берём большую сторону, которая равна 18 и делим на 3 (уменьшаем в 3 раза), получаем 6
Катеты есть среднее геометрическое (среднее пропорциональное) между гипотенузой и своей проекцией на гипотенузу.АВС прямоугольный треугольник;АВ (а), АС (b) катеты; ВС (с) гипотенуза;АК - высота; ВК проекция катета АВ на гипотенузу: ВК=10-3,6=6,4 см;СК - проекция катета АС на гипотенузу: СК=3,6 см;а^2=ВС*ВК;а=√6,4*10=8 см;b^2=ВС*СК;b=√10*3,6=6 см;r=(a+b-c)/2;r=(8+6-10)/2=2 см;r можно вычислить по другой формуле.r=S/p радиус вписанной окружности в произвольный треугольник; (эту формулу нужно знать обязательно);S для прямоугольного треугольника S=a*b/2 половина произведения катетов;р полуперимтр; р=Р/2 ( Р периметр);P=a+b+c (a, b катеты; с гипотенуза);S=ab/2 : P/2=ab/2 * 2/P=ab/(a+b+c);S=8*6/(8+6+10)=48/24=2;ответ: 2
Малая диагональ делит ромб на два треугольника так как один угол равен 60° и треугольник равнобедренный, то остальные два угла равны между собой и равны (180-60):2=60° Следовательно треугольник равносторонний и сторона ромба равна малой диагонали и равна 8см. площадь ромба состоит из суммы площадей двух одинаковых треугольников найдем площадь треугольника по формуле Герона S=√(p(p-a)(p-b)(p-c)) a, b, c - стороны треугольника p - полупериметр Р=8+8+8=24см р=24:2=12см S=√(12*4*4*4)=√(3*4*4*4*4)=16√3 S ромба равна 32√3