1. Координаты середины отрезка - полусумма координат начала и конца. Значит С((2-2)/2;(2+2)/2) или С(0;2). ответ г). 3. Координаты вектора - разность координат конца и начала этого вектора. АВ{-2-2;7-7} или AB{-4;0}. 4. Длина вектора а{6;-8} равна его модулю: |a|=√(6²+(-8)²)=10. 5. Чтобы проверить, лежит ли точка на окружности, надо подставить координаты точки в уравнение окружности: (-5+5)²+(-3-1)²=16 или 0+16=16. ответ: а) да, лежит. 6. Длина радиуса этой окружности - модуль вектора М0. |M0|=√(0-(-3))²+(0-4)²)=√(9+16)=5. ответ в)
Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
Значит С((2-2)/2;(2+2)/2) или С(0;2). ответ г).
3. Координаты вектора - разность координат конца и начала этого вектора.
АВ{-2-2;7-7} или AB{-4;0}.
4. Длина вектора а{6;-8} равна его модулю: |a|=√(6²+(-8)²)=10.
5. Чтобы проверить, лежит ли точка на окружности, надо подставить координаты точки в уравнение окружности:
(-5+5)²+(-3-1)²=16 или 0+16=16. ответ: а) да, лежит.
6. Длина радиуса этой окружности - модуль вектора М0.
|M0|=√(0-(-3))²+(0-4)²)=√(9+16)=5. ответ в)