Объяснение:
Чтобы найти площадь сечения, которое является кругом, нужно знать его радиус r. Найдем его, рассмотрев сечение шара плоскостью, перпендикулярной искомому сечению (тому, площадь которого мы должны найти). (Смотри рисунок.)
Рассматриваемое сечение - тоже круг, его центр О совпадает с центром шара, а радиус R = 25 см. Проведем хорду АВ. Это - диаметр искомого сечения. Расстояние до него - длина перпендикуляра, опущенного на АВ из точки О (обозначим его ОН). Длина этого перпендикуляра h = 20 см. Получился прямоугольный треугольник ОАН с гипотенузой R и катетами h и r. По теореме Пифагора найдем r:
.
Теперь находим площадь сечения:
≈706,86
ответ: 12
Объяснение: угол ВАД = 120 как в условии, а периметр 48.
Найдём одну сторону ромба для этого периметр поделим на 4 и получим 12. Далее мы ищем острый угол ромба. Он равен 180-120 это одно из свойств ромба,что сумма двух прилежащих углов к стороне ромба равняеться 180. Далее из треугольника АВС. Он равнобедренный т.к у ромба все стороны равны. Мы знаем,что верхний угол 60. Значит два угла при основании (180-60)/2 и это давняеться 60. Мы имеем, что все углы треугольника 60 значит он равносторонен и третья сторона равняеться двум другим.