Два круга радиусами по 8 см имеют общую хорду 8√3 см. а) найдите площадь общей части кругов, б) площадь фигуры, образованной всеми точками этих кругов ------------ Рассмотрим данный в приложении рисунок. Общая часть кругов АОВО1 образована двумя равным сегментами, прилегающими к общей хорде АВ. Площадь сегмента найдем по формуле: S=0,5 R²*[(πα /180)-sin α], где R - радиус круга. α - угол сегмента в градусах, π ≈ 3.14 По т. косинусов найдем угол АОВ. АВ²=R²+R²-2R*R*cosα R²*3=2R²(1-cos α) (3/2)-1= -cos α cos α=-1/2 Это косинус 120º sin α= sin 120º=(√3)/2 Подставим найденное значение в формулу площади сегмента. S=0,5* 64*[(π120 /180)-(√3)/2] S=32*(4π-3√3):2 Площадь общей части АОВО1 равна площади двух сегментов: 2S=32*(4π-3√3) Фигура, образованная всеми точками этих кругов, похожа на два полумесяца, касающихся в точках пересечения кругов. Площадь одного «полумесяца» равна площади круга без площади общей части кругов. S=64π - 32*(4π-3√3)=96√3-64π 2S=192√3-128π 2S=128*(1,5√3-π)=≈459,579 см²
Надеюсь, нарисовать сможете. Треуг. АОВ прямоугольный, так как АВ камательная то есть перпендикулярна радиусу ОВ. ОВ-катет прилежащий углу ОАВ. АВ-противолежащий катет. ОВ=АВ×ctg30=5корень3. треуг. САО=треуг. ВАО, так как ОВ=СО как радиус и катет, ОА-общая гипотенуза. Тогда угол СОА=угол ВОА=30. то есть ОА биссектриса. Рассмотрим треугольник СОВ. Он равнобедренный, так как СО=ОВ как радиус. ОА пересекает СВ (пусть так назовем) в точке К. ОК и высота и медиана, тк ледит на биссектрисе ОА. треуг. ОКВ прямоугольный. КВ=ОВ×sinOAB=5 корень из 3 × (1/2) СВ=2КВ=5корень 3. слелайте рисунок и прочитайте мои рассуждения с рисунком!
П=10*4=40