ломаная - это фигура, не лежащая на одной прямой.
звенья - это отрезки, из которых составлена ломаная.
концы отрезков - вершины ломаной
длина ломаной - сумма длин всех звеньев.
2. многоугольник - это фигура, состоящие из замкнутой ломаной.
сторона - один отрезок многоугольника
диагональ - отрезок соединяющий две любые не соседние вершины.
вершина - место пересечений линий в многоугольнике
периметр - длина ломаной.
3. выпуклый многоугольник - это мнгоугольник, который лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.
4. (n -2) . 1800
n - кол- во углов
5. стр. 99 так как сумма углов выпуклого n-угольника равна (n-2)*180˚, то сумма углов четырёхугольника равна 360˚
6.
7. параллелограмм - это четырёхугольник, у которого противолежащие стороны попарно параллельны. является выпуклым четырехугольником.
8-9
для параллелограмма верно свойство: противолежащие стороны попарно равны.
а еще есть признак параллелограма: если в четырехугольнике противолежащие стороны попарно равны, то он паралеллограмм.
10 - 101-102
11. трапеция - четырёхугольник у которого две стороны параллельны а две другие не параллельны
стороны - основания и боковые стороны.
12 трапеция, у которой боковые стороны равны между собой, называется равнобедренной.
трапеция, один из углов которой прямой, называется прямоугольной.
14 прямоугольник - это паралелограмм, у которого все углы прямые
док-во на стр. 108
14 стр. 108
15. ромб - это паралелограмм, у которого все стороны равны. док-во - стр. 109.
17.квадрат - прямоугольник, у которого все стороны равны.
18 две точки называются симметричными относительно прямой а, если это прямая проходит через середину отрезка и перпендикулярна к нему.
19. фигура называется симметричной относительно прямой а, если каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре.
20. две точки называются симметричными относительно точки о, если о - середина отрезка.
21.фигура называется симметричной относительной точки о, если каждой точки фигуры симметричная ей точка относительно точки о также принадлежит этой фигуре.
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.