М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
silva78
silva78
12.11.2021 15:29 •  Геометрия

3. Используя чертеж, найдите: А (2x+16) B о с (х+41) D х


3. Используя чертеж, найдите: А (2x+16) B о с (х+41) D х

👇
Открыть все ответы
Ответ:
yangbomj228
yangbomj228
12.11.2021
Cм. рисунок и обозначения в приложении
По теореме косинусов
(2√3)²=6²+х²-2·6·х·cos 30°
12=36+x²-6√3·x=0
x²- 6√3·x+24=0
D=108-96=12
x=(6√3-2√3)/2=2√3     или    х=(6√3+2√3)/2=4√3

если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника.
Углы параллелограмма 60° и 120°

если х=4√3
то по теореме косинусов ( α -  угол параллелограмма , лежащий против диагонали)
6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α      ⇒     36=12+48-48·cosα⇒

cosα=0,5     

α=60°
второй угол параллелограмма 120°
см. рисунок 2
ответ 120° и 60° 

Сторона параллелограмма равна 2 из корней 3см найдите его углы если диоганаль образующая с другой ст
Сторона параллелограмма равна 2 из корней 3см найдите его углы если диоганаль образующая с другой ст
Сторона параллелограмма равна 2 из корней 3см найдите его углы если диоганаль образующая с другой ст
4,5(98 оценок)
Ответ:
hgfdui
hgfdui
12.11.2021
Геометрический
S(AMB)=1/2MA·MB·sin(AMB)=(√3/4)MA·MB, т.к. ∠AMB=∠ACB=60°.
Отсюда  MA·MB=4S(AMB)/√3 и аналогично из площадей треугольников AMC и СМВ получим MA·MC=4S(AMC)/√3, MC·MB=4S(СMВ)/√3.
По теореме косинусов для тех же треугольников:
AB²=MA²+MB²-MA·MB=MA²+MB²-(4/√3)·S(AMB);
AС²=MA²+MС²+MA·MС=MA²+MС²-(4/√3)·S(AMС);
СB²=MС²+MB²-MС·MB=MС²+MB²-(4/√3)·S(СMB).
Сложим эти равенства:
AB²+AС²+СB²=2(MA²+MB²+MС²)-(4/√3)·(S(AMB)-S(AMС)+S(СMB)).
Но AB=AС=СB=√3, и значит AB²+AС²+СB²=3+3+3=9,
S(AMB)+S(СMB)-S(AMС)=S(ABC)=(3√3)/4.
Поэтому 9=2(MA²+MB²+MС²)-(4/√3)·(3√3)/4, т.е. 
MA²+MB²+MС²=(9+3)/2=6.

Тригонометрический
Если R - радиус, О - центр окружности и ∠AOM=2x, то  MА=2Rsin(x), MB=2Rsin(60°+x), MC=2Rsin(60°-x). Значит 
MA²+MB²+MС²=4R²(sin²(x)+sin²(60°+x)+sin²(60°-x)).
После раскрытия синусов суммы и упрощения получим 6R², что и требовалось.
4,5(36 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ