М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ged95
ged95
28.02.2023 11:15 •  Геометрия

Трикутник A1B1C1 є зображенням прямокутного трикутника ABC, у якого відношення катета до гіпотенузи BC:AB=5:12. Побудуйте зображення центра кола, вписаного в трикутник ABC

👇
Открыть все ответы
Ответ:
igcifxitsizoufzoyuc
igcifxitsizoufzoyuc
28.02.2023
∠С = ∠C1, ∠А = ∠А1, ∠В = ∠В1ВО = ОС = В1О1 = О1С1, т.к. АО и А1О1 — медианы, и ВС = В1С1.В ΔАОС и ΔА1О1С1: АС = А1С1, ОС = О1С1, ∠С = ∠С1. Таким образом, ΔАОС = ΔА1О1С1 по 1-му признаку, откуда АО = А1О1. 2Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.
∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.
В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.
Откуда AK = A1K1.
Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.
∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.
В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.
Откуда AK = A1K1.
4,7(7 оценок)
Ответ:
Рина201
Рина201
28.02.2023
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Дано: А АВС — равнобедренный треугольник, АВ — основание, CD — медиана (рис. 22).

Доказать: CD — биссектриса и высота.

Доказательство. Треугольники CAD и CBD равны но второму признаку равенства треугольников (стороны АС и ВС равны, так как АВС — равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Стороны AD и BD равны, поскольку D — середина отрезка АВ).

 Из равенства треугольников CBD и CAD следует равенство углов

Так как углы ACD и BCD равны, то CD — биссектриса. Поскольку углы ADC и BDC смежные и равны друг другу, они прямые. Следовательно, отрезок CD является также высотой треугольника АВС. Теорема доказана.

Таким образом, установлено, что биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также следующие утверждения:

1. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.

2. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.

вот так-то
4,5(24 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ