Пусть имеем трапецию ABCD, в которой AC и BD диагонали и соответственно равны по условию 9 и 12
S=lh, где l- средняя линия трапеции, а h-высота
Проведем через вершину С прямую, параллельную диагонали ВD. Пусть Е - точка пересечения этой прямой с продолжением АD. ВСЕD - параллелограмм, так как BC||DE и BD||CE.
СЕ = ВD = 12.
Рассмотрим треугольник АСЕ, так как в нем
AE=AD+DE=AD+BC=2l=2*7,5=15
и
(AE)^2=(AC)^2+(CE)^2
15^2=12^2+9^2
225=144+81
225=225
то есть треугольник прямоугольный и угол ACE=90 градусов
Проведем из вершины C на AE высоту CK
Тогда CK= АС*СЕ/АЕ
CK=h = 9*12/15 = 7,2.
то есть
S=lh=7,5*7,2=54
ответ. 54
Обозначим пирамиду АВСДК, К -вершина. Проведём диагонали основания ВС и ВД. В правильной четырёхугольной пирамиде основание квадрат. Точка пересечения диагоналей -центр квадрата О.Из вершины К опустим высоту к оснванию КО=Н. Обозначим сторону квадрата основания А. Тогда диагональ ВД=А корней из 2. Поскольку сечение по условию -равносторонний треугольник, то ВД=КВ=КД. Обозначим их Х. Тогда КО=Н=корень из((Х квадрат-(Х/2)квадрат)=Х*(корень из 3)/2. Подставляем сюда значение ВД, получим Н=А*(корень из 2)*(корень из 3)/2= А*(корень из 6)/2. Площадь основания равна S=1/2*ВД*Н=1/2*А*(корень из 2 )*А*(корень из 6 )/2. По условию эта площадь равна 6 корней из 3. Приравнивая получим А квадрат=12. Подставляем в ранее найденное выражение, получим Н=3 корня из 2. Объём правильной четырёхугольной пирамиды равен V=1/3*H*( A квадрат)=1/3*(3 корня из 2)*12=12 корней из 2.