Обозначим эти пропорции как 1х, 2х, 5х. Зная, что сумма углов треугольника составляет 180°, составляем уравнение:
х+2х+5х=180
8х=180
х=180÷8
х=22,5°. Первый угол=22,5° Теперь найдём остальные углы:
22,5×2=45° - это второй угол
22,5×5=112,5°- это третий угол
Задача 4:
Пусть угол при основании будет "х", тогда угол вершины будет = х+60. Зная, что сумма всех углов треугольника равна 180°, составляем уравнение:
х+х+(х+60)=180
2х+х+60=180
3х+60=180
3х=180-60
3х=120
х=120÷3
х=40; каждый угол при основании =40°; угол вершины=40+60=100°
Задача с треугольником 1:
В прямоугольном треугольнике угол А= 180-90-30=60°, угол А=60°
Так как катет АВ лежит напротив угла С, который =30°, то АВ= половине гипотенузы, значит гипотенуза АС в 2 раза больше АВ, из этого следует что АС= 11×2=22(см). Итак: АС=22см; угол А=60°
Задача с треугольником 2
Рассмотрим ∆ЕСК. Если медиана КР является ещё и высотой, значит этот треугольник равнобедренный и КР будет также и биссектрисой, которая разделит угол К пополам, и каждый угол будет по 45°. Если он равнобедренный, то КС=КЕ=14см. Найдём по теореме Пифагора гипотенузу ЕС:
14²+14²=196+196=√196×√2=14√2. ЕС=14√2см
Так как медиана КР делит сторону пополам, и являясь биссектрисой, делит угол, то ∆КЕР=∆КСР; стороны ЕР=РС=КР = 14√2÷2=7√2; КР=7√2(см)
Рисунок во вложении, хотя можно вполне обойтись без него.
1) Найдем вторую сторону основания параллелепипеда из формулы площади основания. Т.к. он прямоугольный, основание - прямоугольник.
S=a*8=40
а=S:8=40:8=5 см
2) Найдем высоту параллелепипеда из формулы объема.
V=S·h
h=V:S
h=240:40=6cм
Площадь боковой поверхности равна произведению высоты на периметр основания:
Sбок=h·2(a+b)
Sбок=6·2·(8+5)=156 см²
Площадь полной поверхности параллелепипеда равна сумме площадей двух его оснований и боковой поверхности:
Sполн= 2·Sосн +Sбок
Sполн=80+156=236 см²
Диагональ можно найти с теоремы Пифагора ( см. рисунок)
Для этого нужно сначала вычислить диагональ основания АС.
Диагональ АС1 параллелепипеда равна
АС1=√(АС²+С1С²)
Можно воспользоваться теоремой:
Квадрат диагонали параллепипеда равен сумме квадратов трех его линейных измерений.
АС1²=АВ²+ВС²+С1С²=8²+5²+6²=125
АС1=√125=5√5 см
-----------------------------------------
№2
Объем прямоугольного параллелепипеда равен произведению высоты на площадь его основания или произведению трех его измерений. Что одно и то же.
V=a·b·c
Об основании известно, что его периметр Р равен 40 см.
Р=2(а+b)
Ни а, ни b не известны, но их длину можно найти.
Пусть ширина основания а, тогда его длина ( по условию) а+4
40=2·(а+а+4)=2а+2а+8=4а+8
4а=40-8=32 см
а=8 см
b=8+4=12 см
Высоту найдем из площади боковой поверхности, которая равна произведению высоты на периметр основания:
Sбок=hP
h=Sбок:Р
h=400:40=10 см
V=a·b·c=8·12·10=960 см³