Точка О - точка пересечения прямых
Угол между двумя пересекающимися прямыми всегда измеряется от 0 до 90 градусов (по определению)
И максимальную сумму AC+BD мы получим под углом в 90 градусов
Значит получим два равных прямоугольных треугольника
Обозначим AO=x
Предположим что AO=OC =x (так как отрезки изменяются пропорционально)
Значит и отрезки BO = DO = x (по равенству треугольников)
Тогда по теореме Пифагора AC = BD = x√2
AC+BD = 2x√2
AB+CD=AO+BO+CO+DO= 4x
Cократим на x и сразу видим что:
2√2 < 4
Значит AC+BD < AB + CD, ч.т.д
BD=CD по условию, а ED - общий катет. Отсюда ∠BDE=∠CDE,
а т.к. точки A,D,E лежат на одной прямой, то и ∠BDA=∠CDA.
(Заметим, что если Е совпала с D, то равенство углов ∠BDA и ∠CDA следует сразу из условия, т.к. BC⊥AD).
Далее, треугольники BDA и CDA равны по сторонам и углу между ними
(AD - общая, BD=CD по условию, ∠BDA=∠CDA доказали выше), а значит, AB=AC, что и требовалось.