2 задача. Найдем диагональ прямоугольника со сторонами 4 и 6 см. По скольку, согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов 42 + 62 = 16+36=корень 52=7,21 Сравним полученный её с известной диагональю параллелограмма 8 — 7,21 = 0,29 По скольку известная диагональ больше диагонали прямоугольника, то , как было сказано выше, необходимо полученную разницу вычесть из величины диагонали прямоугольника, чтобы получить меньшую, искомую, диагональ. И так: 7,21 — 0,29 = 6,92 см.
3 задача.
R=a/2sin60 а=R*2*sin60=9*2*(корень из 3)/2=9*корень из3
1) Уравнение плоскости, проходящей через точку перпендикулярно векторуДана точка и вектор . То есть и прямая и точка должны иметь соответствующие координаты. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору: . . Раскрыв скобки и приведя подобные, получаем уравнение плоскости общего вида Ax + By + Cz + D = 0. Для построения плоскости её уравнение общего вида надо преобразовать в уравнение в отрезках. Значения (-D/A) = a, (-D/B) = b, (-D/C) = это и есть отрезки на осях, через которые проходит плоскость.
2 задача. Найдем диагональ прямоугольника со сторонами 4 и 6 см. По скольку, согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов
42 + 62 = 16+36=корень 52=7,21 Сравним полученный её с известной диагональю параллелограмма 8 — 7,21 = 0,29 По скольку известная диагональ больше диагонали прямоугольника, то , как было сказано выше, необходимо полученную разницу вычесть из величины диагонали прямоугольника, чтобы получить меньшую, искомую, диагональ.
И так: 7,21 — 0,29 = 6,92 см.
3 задача.
R=a/2sin60
а=R*2*sin60=9*2*(корень из 3)/2=9*корень из3