в четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны.
трапеция - четырехугольник, следовательно, если в неё можно вписать окружность, то сумма ее оснований равна сумме боковых сторон.
сумма оснований данной трапеции 3+5=8, а её средняя линия равна 4
пусть длина меньшего основания а . тогда длина большего - 8-а.
средняя линия трапеции делит саму трапецию на две меньшего размера, высоты каждой из которых равны половине высоты исходной.
площадь трапеции равна полусумме оснований, умноженной на высоту.
пусть высота каждой части трапеции равна h.
тогда площадь верхней трапеции будет (а+4)•h: 2,
а площадь большей (8-а+4)•h: 2=(12-а)•h: 2
по условию отношение этих площадей равно 5/11⇒
[ (а+4)•h: 2]: [ (12-а)•h: 2]=5/11
отсюда 60-5а=11а+44
16а=16
а=1
подробнее - на -
Сумма углов четырехугольника =360°
В четырехугольнике ОКЕС углы ЕКО=ЕСО=90° ( свойство радиуса, проведенного в точку касания)
Угол КЕС=360°-2•90°-120°=60°
По свойству отрезков касательных из одной точки КЕ=СЕ.
∆ КЕС - равнобедренный, его углы при КС равны (180°-60°):2=60° -
∆ КЕС равносторонний.
∆ КОС - равнобедренный ( стороны - радиусы).
Углы при КС=90°- 60°=30°
КЕ=СЕ, КО=СО, ЕО - общая. ∆ ЕКО=∆ ЕСО.
ЕО - биссектриса угла КЕС.
Угол ОЕС =30°
∆ ОЕС - прямоугольный.
Радиус ОС ( катет) противолежит углу 30°. ⇒
ОЕ=2•OC=12 см (свойство угла 30°).
КА=СА, ЕА медиана и высота ∆ КЕС,⇒ ЕО ⊥ АС.
В прямоугольном Δ АОС угол ОСА=30°⇒
ОА=ОС•sin30°=6•0,5=3 см