1. Описать окружность можно только около равнобедренной трапеции, а у нее углы при основании равны, а углы, прилежащие к боковой стороне составляют в сумме 180, поэтому углы будут 49°; 180°-49°=131°. ответ 49°; 131°; 131°.
2. Т.к. ОА и ОВ - радиусы, проведенные в точки касания, а СА=СВ по свойству отрезков касательных. проведенных из одной точки, то прямоугольные треугольники АОС и ВОС равны по гипотенузе и катету. (∠А=∠В=90°), значит, ∠АОС=∠ВОС⇒=90°-0.5∠АСО, тогда ∠АОВ=180°-83°=97°
3. Периметр равен 36, значит, сторона 36/4=9, высота ромба равна частному от деления площади на сторону, то есть 54/9=6
4. tg∠B=АС/ВС=7/2=3.5
Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности.
Rш=10см.
Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см.
Тогда его сторона равна Rк= 10√2см.
Сторона правильного треугольника равна R*√3 (формула). Или в нашем случае 10√3.
Но можно и без формулы: по теореме косинусов.
a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см.
ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.