Сумма углов выпуклого многоугольника находится по формуле: N=180°• (n – 2), где N - сумма углов, n - их количество ( а, значит, и число сторон многоугольника). Но известно, что сумма внешних углов выпуклого многоугольника равна 360°, причем, с каждым внутренним углом внешний составит в сумме развернутый угол, т.е. 180°. Очевидно, что сумма всех внутренних и внешних углов кратна числу 180°. Тогда число сторон данного выпуклого многоугольника (2160°+360°):180°=14
Теперь вычислим то же число по формуле: 2160°=180°• (n – 2), 2160°=180°•n-360 180°•n=2160°+360°⇒ n=2520°:180°=14 (сторон)
Прямоугольный треугольник имеет один угол = 90 °, а два других угла являются острыми. Допустим, что меньший из этих двух острых уголов =Х °. Поскольку по условию задачи сказано, что один из острых углов на 50% больше второго, значит второй угол в 2 раза больше первого (поскольку 50% величины это половина от 100%) и этот второй острый угол =2Х°. Сума всех углов любого треугольника =180° Значит сума углов нашего треугольника =180° Выходит, х+2х+90°=180° 3х=180°-90° 3х=90° х=30° - величина первого острого угла. Значит величина второго острого угла = 2Х°=2*30°=60°
ответ: острые угли прямоугольного треугольника равны 30° и 60°
N=180°• (n – 2), где N - сумма углов, n - их количество ( а, значит, и число сторон многоугольника).
Но известно, что сумма внешних углов выпуклого многоугольника равна 360°, причем, с каждым внутренним углом внешний составит в сумме развернутый угол, т.е. 180°.
Очевидно, что сумма всех внутренних и внешних углов кратна числу 180°.
Тогда число сторон данного выпуклого многоугольника
(2160°+360°):180°=14
Теперь вычислим то же число по формуле:
2160°=180°• (n – 2),
2160°=180°•n-360
180°•n=2160°+360°⇒
n=2520°:180°=14 (сторон)