Мастер изготовил два подобных сундука в виде прямоугольного параллелепипеда. Длина, ширина и высота первого сундука 1м, 60см, 70см соответственно. Какова высота второго сундука, если периметр основания равен 4,8м.
Пусть основание прямоугольного параллелепипеда прямоугольник ABCD . AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см. обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh. По теореме Пифагора для треугольников ABB₁ и ADD₁: { AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁². { x²+h² =13² ; (7x)² +h²=37². Вычитаем из второго уравнения системы первое (7x)² -x² =37² -13²; 48x² =(37-13)(37+13) ; 2*24x² =24*2*25⇒x =5 ; h =√(13² -5²) =12. S бок =16xh =16*5*12 =16*60 =960 (см²).
Треугольники АВС и АМР подобны, так как <В=<P, <C=<M (углы соответственные при параллельных прямых МР и ВС и секущих АВ и АС соответственно). Коэффициент подобия - это отношение соответственных сторон, или высот, или медиан, или периметров этих треугольников. Значит из подобия треугольников имеем: АО/АН = k - коэффициент подобия. Медианы треугольника делятся в точке пересечения в отношении 2:1 считая от вершины (свойство). Значит АО/ОН=2:1. Отсюда ОН=АО:2=24:2=12см. АН=АО+ОН=36см. Тогда АО/АН=24/36=2/3 = k (коэффициент подобия). Из подобия треугольников АВС и АМР: МР равна ВС*k = 32*(2/3)=21и1/3. ответ: MP=21и1/3.
AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см.
обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh.
По теореме Пифагора для треугольников ABB₁ и ADD₁:
{ AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁².
{ x²+h² =13² ; (7x)² +h²=37².
Вычитаем из второго уравнения системы первое
(7x)² -x² =37² -13²;
48x² =(37-13)(37+13) ;
2*24x² =24*2*25⇒x =5 ;
h =√(13² -5²) =12.
S бок =16xh =16*5*12 =16*60 =960 (см²).
ответ: 960 см².