Воспользуемся формулой площади треугольника S=1/2*ab*sin С, где С - угол между сторонами а и b. Если углы треугольника обозначим как А, В, С, а стороны как а, b, c (соответственно 7, 9, 11), то получим значения площади S=63/2*sin C=77/2*sin B=99/2*sin A. Другая формула площади S=1/4*V(a+b+c)(a+b-c)(a+c-b)(b+c-a)=1/4V27*5*9*13=3/4V195. 63/2sin C=3/4*V195 => sin C=3/4*V195*2/63=3/126*v195=1/42V195 (cos C)^2=1-(sin c)^2 => (cos C)^2=1-195/1764=65/588 => cos C=V65/588=1/14*V65/3=1/42V195. Аналогично находим cos B, cos A.
Обозначим точку пересечения высот обеих плоскостей и АВ через О; Найдем ДО -высоту равнобедренного треугольника она будет высотой медианой в равнобедренном треугольнике , так же как и ОС будет высотой медианой в равностороннем треугольнике.ДА^2-АО^2=2^2+(\/3)^2=1;Откуда ДО=1; Ищем СО^2: АС^2-АО^2=12-3=9; Откуда СО=3; Итак имеем 3стороны треугольника: с величинами :1;3; и \/7; По ТЕЛРЕМЕ косинусов найдем угол ДОС; ДС^2=ДО^2+ОС^2-2ДО*ОС*cosДОС; Подставим и получим числовой результат: 7=1+9-6*cosДОС; 6cosДОС=3; Cos ДОС=1/2; Откуда угол ДОС равен 60* ; ответ угол наклона ДОС равен 60*;
Відповідь:
2 кут = 60°
Пояснення:
суміжні кути утворюють розгорнений кут який дорівнює 180 градусів отже
1 кут + 2 кут = 180°
2 кут = 180° - 1 кут
2 кут = 180° - 120°
2 кут = 60°