Объяснение:1. Если один из углов прямоугольного треугольника равен 20°, то чему равен другой острый угол? Решение: 90° - 20°=70°, ответ: 70°
2. Градусная мера угла при вершине равнобедренного треугольника равна 80°. Чему равны градусные меры углов при
основании? Решение: (180°-80°):2=50° ответ : 50° и 50°
3.Один из углов, образованных при пересечении двух прямых, равен 49°. Найдите меры остальных углов. ∠1=∠3=49°∠2=∠4=180°-49°=131° ответ: 49°, 131°, 131°
4. Если боковая сторона равнобедренного треугольника равна 14 см, а основание - 1 см, то чему равен периметр треугольника? Решение: Р= 14+14+1=29 см ответ: 29 см
5.Найдите смежные углы, если один из них на 50° больше другого. Решение: х+(х+50)=180 ⇒ 2х =130 ⇒ х=130:2=65° ⇒∠1=65°, ∠2=180°-65°= 115° ответ: 65° и 115°
6. В равных треугольниках ABC и КМР АВ = 8 см, ВС = 15см. Периметр треугольника АВС равен 31 см. Найдите длину стороны КР. Решение: по условию КР= АС = 31-8-15= 8 см
такого треугольника не существует
или 60 см^2.
Объяснение:
Треугольника с заданными сторонами не существует.
13 см > 10см + 13мм, не выполнено неравенство для сторон треугольника.
Если в условии опечатка, длины стороны треугольника 13 см, 13 см, 10 см, то площадь может быть найдена по формуле Герона:
S = √p•(p-a)•(p-b)•(p-c).
p = (10+13+13):2 = 18 (см),
S = √18•(18-13)•(18-13)•(18-10) = √(18•5^2•8) = √(9•5^2•16) = 3•5•4 = 60 (см^2)
Ещё одним может быть нахождение по формуле
S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
(S = 1/2•10•12 = 60 (см^2) ).