Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
Поскольку луч с проходит между сторонами угла (ab), по свойству измерения углов получаем: ∠(ac) + ∠(bc) = ∠(ab).
1) ∠(ab) = ∠(bc) + ∠(bc) + 30°, 60° = 2 ⋅ ∠(bc) + 30°;
2 ⋅ ∠(bc) = 30°; ∠(ac) = 45°, ∠(bc) = 15°.
2) ∠(ab) = 2 ⋅ ∠(bc) + ∠(bc), 60° = 3 ⋅ ∠(bc),
∠(ac) = 40°, ∠(bc) = 20°.
3) ∠(ac) = ∠(bc) = ∠(ab) : 2 = 60° : 2 = 30°.
4) ∠(ac) = 2x, ∠(bc) = 3x, ∠(ab) = 60°, 2x + 3x = 60°,
5x = 60°, x = 12°.
∠(ac) = 24°, ∠(bc) = 36°.
ответ: 1) ∠(ac) = 45°, ∠(bc) = 15°;
2) ∠(ac) = 40°, ∠(bc) = 20°;
3)∠(ac) = 30°, ∠(bc) = 60°;
4)∠(ac) = 24°, ∠(bc) = 36°.