Пусть AD и BE пересекаются в точке K В треугольнике ABD BE - и биссектриса и высота, то есть это равнобедренный треугольник, AB = BD, и BE - так же и медиана, то есть AK = KD; Пусть теперь точка F лежит на продолжении BA за точку A, так что CF II AD. Так как BD - медиана, то в треугольнике FBC AD - средняя линия, а CA - медиана треугольника FBC; само собой, BE так же медиана этого равнобедренного треугольника FBC (если её продолжить за точку E до пересечения с FC в точке G), то есть точка Е делит AC, как это обычно и бывает с медианами: AE/EC = 1/2; Более того, BE/EG = 2/1, то есть BE/BG = 2/3; а BK/KG = 1/1; то есть BK/BG = 1/2; отсюда BK/BE = 3/4; и KE/BE = 1/4; Таким образом, AK = KD = 48; KE = 24; BK = 72; AB = √(48^2 + 72^2) = 24√13; BC = 2*AB = 48√13; AE = √(48^2 + 24^2) = 24√5; AC = 3*AE = 72√5;
АН - медиана!
проведём ВД и СК - медианы! они пересекаются в одной точке О и в нее же падает высота!
рассмотрим прямоугольный треугольник SOH! угол SHO =45 по условию! SO - катет=5! SH - гипотинуза и она же является апофемой!
SH=SO/sin45=5/sqrt2/2=10/sqrt2=10sqrt2/2=5sqrt2
угол равен 45, то треугольник равнобедренный и ОН=5!
медианы точкой пересеения делятся в отношение 2 к 1! на ОН приходится только 1 часть, значит, вся меиана равна 15!
рассмотрим прямоугольный треугольник АВН! АН=15, угол ВАН=30 угол АВН =60
АВ=АН/sin60=15/sqrt3/2=30/sqrt3=30sqrt3/3=10sqrt3
Po=30sqrt3
Sb= 30sqrt3*5sqrt2/2=75sqrt6
So=10sqrt3*15/2=5sqrt3*15=75sqrt3
Sp=So+Sb=75sqrt6+75sqrt3