Бородин — выдающийся композитор, видный ученый-химик, неутомимый научно-общественный деятель. Его музыкальное наследие количественно невелико, но разнообразно по содержанию. Интерес композитора к богатырским образам русского героического эпоса отразился в опере и двух симфониях, впечатляющих могучей силой, величавым размахом. Бородин создал неувядаемые образцы вокальной лирики. Его музыкальный стиль отмечен гармонической ясностью, тяготением к монументальности и классической завершенностью. Щедрый мелодический дар композитора питался как русской народной песней, так и восточной музыкой.
Александр Порфирьевич Бородин родился 31 октября (12 ноября) 1833 года в Петербурге. В 1856 году окончил Медико-хирургическую академию, а через два года получил степень доктора медицины. Интерес к музыке пробудился у Бородина рано. В детские и юношеские годы он увлекался игрой на виолончели, флейте и фортепиано и сочинял как любитель. Творческая активность композитора возросла благодаря сближению с Балакиревым и участию в деятельности его кружка, который получил впоследствии наименование «Могучей кучки». В своей Первой симфонии (1867) Бородин выступил как убежденный приверженец «новой русской музыкальной школы». В те же годы появилась серия его романсов эпического и лирического склада.
Исполнение Первой симфонии (1869) принесло композитору общественное признание. Тогда же были задуманы два монументальных сочинения — опера «Князь Игорь» и Вторая симфония, которую В В. Стасов впоследствии метко назвал «Богатырской» (завершена в 1876 году). Иная, лирическая сфера настроений преобладает в камерных произведениях — Первом (1879) и Втором (1881) струнных квартетах, а также романсах начала восьмидесятых годов (среди них — элегия «Для берегов отчизны дальной»). Последние крупные сочинения Бородина — программная симфоническая картина «В Средней Азии» (1880) и незаконченная Третья симфония (1887).
Скончался Бородин 15 (27) февраля 1887 года в Петербурге.
Правильная треугольная пирамида SABC- это пирамида, основанием которой является правильный треугольник ABC (АВ=ВС=АС), а вершина S проецируется в центр основания O. Высота основания СК=6 (она же и медиана, и биссектриса) Значит сторона основания АВ=2СК/√3=2*6/√3=4√3 <SСO=60° Т.к. в равностороннем треугольнике центр О является центром вписанной и описанной окружности, то значит ОС - это радиус описанной окружности.: ОС=АВ/√3=4√3/√3=4. Из прямоугольного ΔSОС найдем SО: SО=ОС*tg 60=4√3. Объем пирамиды V=SO*AB²/4√3=4√3*(4√3)²/4√3=48
24 см.
Объяснение:
Дано: Р∈ АВ
АР:РВ = 0,4 =
АВ = 84 см.
Найти: АР
1) АВ = АР + РВ
Тогда пусть АР = 2х, РВ = 5х . Следовательно, АВ = 2х+ 5х = 7 х.
7 · х = 84
х = 84 : 7
х = 12 (см.) - 1 часть отрезка
2) АР = 2х
АР = 2 · 12 = 24 (см.)
ответ: 24 см.