Площа прямої призми = площа основи*2 + периметр основи*висота.
В основі призми прямокутний трикутник. Його площа = катет1*катет2 /2. Периметр трикутника = сумма всіх сторін. В даному трикутнику відомі дві сторони. За теоремою Піфагора знайдемо гіпотенузу:
6*6+8*8 = 10*10
Гіпотенуза = 10 см
Отже, периметр = 10+6+8 = 24 см
площа = 8*6/2 = 48/2 = 24 кв.см
У прямій призмі бічні ребра перпендикулярні основі, тобто бічне ребро - висота призми.
Тепер площа пр. призми = 2*24 + 24*5 = 48+120 = 168 кв.см
Відповідь: 168 кв.см площа повної поверхні прямої призми.
ответ:
если диагональ ромба 6√3, то ее половина 3√3, диагонали ромба пересекаются под прямым углом и делит его на 4 равных треугольника, найдем синус половины большего угла в таком треугольнике, он равен отношению противолежащего катета к гипотенузе. т.е. 3√3/6=√3/2,
этому синусу соответствует угол, равный 60°, но это половина большего угла ромба, значит, весь угол равен 120°, а прилежащие к одной стороне ромба углы в сумме составляют 180°, поэтому второй угол равен 180°-120°=60°. так как противоположные углы в ромбе равны, то два угла по 120°, и два угла по 60°
ответ. 120 град., 60 град., 120 град., 60 град.
подробнее - на -
объяснение: