Выберите верные утверждения. Укажите один или несколько правильных вариантов ответа: Через любые три точки проходит не более одной прямой. Любые три прямые имеют не менее одной общей точки. Любые две прямые имеют ровно одну общую точку. Через любые две точки можно провести прямую, и притом только одну.
Пусть исходная трапеция - АВСД, Высота трапеции Н=2h, где h - высота каждой меньшей трапеции. ВС=а, АД=b МК - средняя линия исходной трапеции и равна (а+b):2 МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований: S1=h*(ВС+МК):2 S1=h*{а+(а+b):2}:2)=h*(3a+b):4 S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований: S2=h*(AD+МК):2 S2=h*{b+(b+a):2}:2=h*(a+3b):4 Разность между площадями этих трапеций S2-S1=h*(a+3b):4-h*(3a+b):4= =(ha+3hb-3ha-hb):4=2h(b-a):4 2h=H S2-S1=H(b-a):4
Пусть исходная трапеция - АВСД, Высота трапеции Н=2h, где h - высота каждой меньшей трапеции. ВС=а, АД=b МК - средняя линия исходной трапеции и равна (а+b):2 МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований: S1=h*(ВС+МК):2 S1=h*{а+(а+b):2}:2)=h*(3a+b):4 S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований: S2=h*(AD+МК):2 S2=h*{b+(b+a):2}:2=h*(a+3b):4 Разность между площадями этих трапеций S2-S1=h*(a+3b):4-h*(3a+b):4= =(ha+3hb-3ha-hb):4=2h(b-a):4 2h=H S2-S1=H(b-a):4
Любые три прямые имеют не менее одной общей точки - верно
Через любые две точки можно провести прямую, и притом только одну. - верно
Объяснение:
Через любые три точки проходит не более одной прямой.-неверно
Любые две прямые имеют ровно одну общую точку. - неверно