1) ABCD - прямоугольник:
AB:BC=3:5 (из усл) => пусть х см = 1 часть, тогда АВ=3х см, а ВС=5х см. P ABCD = 2(AB+BC). Периметр прямоугольника = 3.2 см. Составляем уравнение.
2(3х+5х)=3.2
16х=3.2
х=0.2 (см);
2) АВ=3х см=3×0.2=0.6(см);
3) ВС=5х см=5×0.2=1(см);
4) Так как ABCD - прямоугольник => AB=CD=0.6 см, а BC=AD=1 см.
ответ: 0.6 см, 1 см, 0.6 см, 1 см.
1) Есть треугольник MKP
Есть треугольник MKPпроведём высоту из вершины К на МР, получим точку Н, она будет лежать на середине МР, т.к. треугольник равнобедренный
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:МН^2 + НК^2 = МК^2
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:МН^2 + НК^2 = МК^236 + НК^2 = 100
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:МН^2 + НК^2 = МК^236 + НК^2 = 100НК^2 = 100 - 36
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:МН^2 + НК^2 = МК^236 + НК^2 = 100НК^2 = 100 - 36НК^2 = 64
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:МН^2 + НК^2 = МК^236 + НК^2 = 100НК^2 = 100 - 36НК^2 = 64НК = 8
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:МН^2 + НК^2 = МК^236 + НК^2 = 100НК^2 = 100 - 36НК^2 = 64НК = 8теперь получили прямоугольный треугольник NKH, где NK = 15, KH = 8, по теореме пифагора получаем
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:МН^2 + НК^2 = МК^236 + НК^2 = 100НК^2 = 100 - 36НК^2 = 64НК = 8теперь получили прямоугольный треугольник NKH, где NK = 15, KH = 8, по теореме пифагора получаемNK^2 + KH^2 = NH^2
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:МН^2 + НК^2 = МК^236 + НК^2 = 100НК^2 = 100 - 36НК^2 = 64НК = 8теперь получили прямоугольный треугольник NKH, где NK = 15, KH = 8, по теореме пифагора получаемNK^2 + KH^2 = NH^2255 + 64 = NH^2
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:МН^2 + НК^2 = МК^236 + НК^2 = 100НК^2 = 100 - 36НК^2 = 64НК = 8теперь получили прямоугольный треугольник NKH, где NK = 15, KH = 8, по теореме пифагора получаемNK^2 + KH^2 = NH^2255 + 64 = NH^2319 = NH^2
она будет лежать на середине МР, т.к. треугольник равнобедренныйпо теореме пифагора получаем:МН^2 + НК^2 = МК^236 + НК^2 = 100НК^2 = 100 - 36НК^2 = 64НК = 8теперь получили прямоугольный треугольник NKH, где NK = 15, KH = 8, по теореме пифагора получаемNK^2 + KH^2 = NH^2255 + 64 = NH^2319 = NH^2NH = sqrt(319)
Відповідь:
Пояснення:
Пусть М1 середина А1В1, а МєАВ и АМ=0.25
Пусть Р середина СД, а Р1єС1Д1 и Р1С1=0.25
Для построения сечения соединяем точки только те, которие лежат в одной плоскости
1. Соединяем точки М1 и М
2. Соединяем М и Р
3. Так как основание и верхня грань паралельни, то линии пересечения етих плоскостей третей, будут паралельни → М1Р1||МР. Поетому проводим прямую с точки М1 паралельную прямой МР и с пересечением С1Д1 получаем точку Р1
Соединяем Р1 с Р имеем сечение ММ1Р1Р - квадрат, так как лежат сторони на гранях куба, которие перпендикулярние
Чтоби вичислить величину сторони, рассмотрим прямоугольний треугольник на АА1В1В, где гипотенуза есть ММ1, а катети равни 0,25 и 1. По теоремме Пивагора ММ1^2=1+0.0625=1.0625
S■=1,0625
1 и 0,6
Объяснение:
P=2(a+b)
2(3x+5x)=3,2
3x+5x=1,6
8x=1.6
x=0.2 - одна часть
а=х*3 = 0,2*3 = 0,6
b=x*5 = 0,2 * 5 = 1