Объяснение:
ермин, введённый Международным астрономическим союзом в 2006[1] году для обозначения объектов Солнечной системы, которые не являются ни планетами, ни карликовыми планетами, ни их спутниками:
Все прочитанные объекты, обращающиеся вокруг Солнца, за исключением спутников, должны быть отнесены к «малым телам Солнечной системы» ... В настоящее время в их список включено большинство астероидов Солнечной системы, большинство транснептуновых объектов (ТНО), а также кометы и прочие малые тела
Распределение кентавров и транснептуновых объектов по расстоянию от Солнца (увеличивается слева направо) и наклонению орбиты (увеличивается снизу вверх)
В настоящее время нет ясности, будет ли проведена для малых тел Солнечной системы нижняя граница размеров или к ним будут отнесены любые объекты до уровня метеороидов.
Естественные спутники, вообще говоря, отличаются от малых тел Солнечной системы только орбитами: они обращаются не вокруг Солнца, а вокруг других объектов Солнечной системы. Крупные спутники отличаются ещё и тем, что пребывают в гидростатическом равновесии (в результате чего имеют круглую форму).
Некоторые из крупнейших малых тел Солнечной системы в дальнейшем могут быть переклассифицированы в карликовые планеты, если в результате дальнейших исследований выяснится, что они находятся в состоянии гидростатического равновесия.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).