Пусть ABCD – трапеция, CD = 2 см, АВ = 3 см, BD = 3 см и АС = 4 см. Чтобы известные элементы включить в один треугольник, перенесём диагональ BD на вектор DC в положение СВ'. Рассмотрим треугольник АСВ1. Так как ВВ'CD – параллелограмм, то В'С = 3 см, АВ' = АВ + ВВ' = АВ + CD = 5 см. Теперь известны все три стороны треугольника АВ'С. Так как АС²+ В'С²= АВ'²= 16+9=25, то треугольник АВ'С – прямоугольный, причем АСВ' = 90°. Отсюда непосредственно следует, что угол между диагоналями трапеции, равный углу АСВ', составляет 90°. Площадь трапеции, как и всякого четырёхугольника, равна половине произведения диагоналей на синус угла между ними. Отсюда площадь равна 1/2AC * BD * sin 90° = 1/2 * 4 * 3 * 1 = 6 см²
Уравнение окружности в общем виде: ( х - а)^2 + (у - в)^2 = R^2, где (а,в) - координаты центра окружности, R - радиус. Если центр окружности лежит на биссектрисе, значит координаты равны у = х. Пусть у = х = t. Точка (1; 8) принадлежит окружности, значит: (1-t)^2 + (8-t)^2 = 5^2; 1 - 2t + t^2 + 64 - 16t + t^2 = 25; 2t^2 - 18t + 40 = 0; t^2 - 9t + 20 = 0; t = 4 или t = 5, уравнений, удовлетворяющих данному условию два: (х - 5)^2 + (y - 5)^2 = 5^2 или (х -4)^2 + (y - 4)^2 = 5^2
Объяснение:
поставьте лучший ответ