точка пересечения диагоналей делит их в одношении 2/3, (такое же отношение у оснований, но это не слишком важно). То есть части диагоналей, являющиеся боковыми сторонами треугольника с площадью 9, составляют 3/(3+2) = 3/5 от целых диагоналей.
Проведем из вершины малого основания прямую II диагонали, которая через эту вершину не проходит, до пересечения с продолжением большого основания. Получившийся треугольник имеет площадь, равную площади трапеции, поскольку его основание равно сумме оснований трапеции, а высота у них общая (расстояние от вершины малого основания до большого).
При этом боковые стороны получившегося треугольника равны целым диагоналям, то есть отношение его площади к площади треугольника, прилегающего к большому основанию трапеции, равно (5/3)^2.
Поэтому площадь трапеции равна 9*(5/3)^2 = 25.
Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH.
Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции.
Sтрапеции=27+33/2 * 6 = 180 см^2
ответ:180 см^2