с прямым углом
, EF — биссектриса
,
, FG — искомый отрезок.
.
— биссектриса, то
(биссектриса
делит
на два равные угла).
(это следует из условия: так как
прямоугольный, то и
; так как
— расстояние от
до
, то
).
и
, то и третий угол первого треугольника равен третьему углу второго треугольника:
. Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:

.
является для обоих треугольников общей.
(второй признак равенства треугольников — по стороне и двум прилежащим к ней углам (
— сторона, а
— два прилежащих угла)).
соответствует
, тогда:
. Смотрите второй рисунок.
(x/3)^2+y^2=1 - каноническое уравнение эллипса
полуоси 3 (вдоль оси х) и 1 (вдоль оси у)
F1 и F2 - фокусы эллипса, расположены на оси х, так как полуось вдоль х длиннее
фокусное расстояние с=корень(3^2-1^2)=2*корень(2)
F1=(-2*корень(2);0)
F2=(2*корень(2);0)
2)9x^2+25y^2-1=0
(x/(1/3))^2+(y/(1/5))^2=1 - каноническое уравнение эллипса
полуоси 1/3 (вдоль оси х) и 1/5 (вдоль оси у)
F1 и F2 - фокусы эллипса, расположены на оси х, так как полуось вдоль х длиннее
фокусное расстояние с=корень((1/3)^2-(1/5)^2)=4/15=0,2(6)
F1=(-4/15;0)
F2=(4/15;0)