Если нам известны стороны: Проведем две медианы к боковым сторонам треугольника. Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой. Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα Выразим медиану одного из образовавшихся треугольников по теореме косинусов. Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны. Подставив найденное значение cosα в уравнение медианы, найдем ее длину.
Контретное решение зависит от того, какие даны величины в условии задачи.
1) Проведём отрезок FE параллельно основаниям трапеции ( FE || BC || AD ), тогда BF = AF , FE || BC || AD → FE – средняя линия трапеции, CE = ED
угол EFD = угол ADF – как накрест лежащие углы при параллельных прямых FE и AD и секущей FD По условию угол EDF = угол ADF Значит, угол EFD = угол EDF → ∆ FED – равнобедренный, FE = ED = 1/2 × CD = 1/2 × 13 = 6,5
Средняя линия трапеции вычисляется по формуле:
EF = 1/2 × ( BC + AD )
6,5 = 1/2 × ( 4 + AD ) 13 = 4 + AD AD = 9
2) Теперь проведём BK || CD → четырёхугольник BCDK – параллелограмм ( BK || CD , BC || KD ) По свойству параллелограмма ВС = KD = 4 , BK = CD = 13 → AK = AD – KD = 9 - 4 = 5
Значит, по теореме, обратной теореме Пифагора получаем, что ∆ ВАК – прямоугольный, угол ВАК = 90° Из этого следует, что отрезок АВ совпадает с высотой ВН трапеции , АВ = ВН = 12
Следовательно, трапеция АВСD прямоугольная с прямым углом А
Площадь трапеции вычисляется по формуле: S = 1/2 × ( a + b ) × h где а, b – основания трапеции, h – высота трапеции
S abcd = 1/2 × ( ВС + AD ) × АВ = EF × AB = 6,5 × 12 = 78
Если нам известны стороны:
Проведем две медианы к боковым сторонам треугольника.
Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой.
Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα
Выразим медиану одного из образовавшихся треугольников по теореме косинусов.
Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны.
Подставив найденное значение cosα в уравнение медианы, найдем ее длину.
Контретное решение зависит от того, какие даны величины в условии задачи.