Задача решается через подобие треугольников В подобных треугольниках соответствующие стороны пропорциональны. Первый треугольник АВС, где: АВ - это высота столба, АВ=5,4 (м); АС - длина тени столба, ее нужно найти, АС=х (м); угол А=90°, угол В - это угол, под которым падает луч солнца. Второй треугольник КНР, где: КН - это рост человека, КН=170 (см)=1,7 (м); КР - это длина тени человека, КР=1 (м); угол К=90°; угол Н - это угол, под которым падает луч солнца. Прямоугольные треугольники АВС и КНР подобны по острому углу: уг.В=уг.Н; Из подобия треугольников следует соотношение: АВ/КН=АС/КР; 5,4/1,7=х/1; х=3 3/17 (м); ответ: 3 3/17
1) 2)Всё решается очень просто. Радиус описанной окружности вокруг равностороннего треугольника вычисляется по формуле=a*(корень из 3)/3 "а"-это сторона треугольника. Тогда по условию:
a*(корень из 3)/3=8 а=8*(корень из 3) Периметр=3а=24*(корень из 3) Радиус вписанной окружности в равнотороннем треугольнике считается так: r=a*(корень из 3)/6=8*(корень из 3)*(корень из 3)/6=4 Вот и всё решение. 3) Сторона ромба ABCD равна 50, одна диагональ - 60, диагонали пересекаются в точке О под прямым углом и делятся пополам По теореме Пифагора вторая диагональ = 80 см. Опустим перпендикуляр на сторону АВ из точки О, он же - радиус вписанной окружности. Точка пересечения К Треугольники АКО и АВО подобны ( по равенству 3 углов ) Из подобия треугольников ОК/АО = ОВ/АВ ОК = АО*ОВ/АВ = 40*30/50 = 24 см.
Объяснение:
Рассмотрим треугольники АВС и DЕF:
∠BAC = ∠ DFE и ∠ACB = ∠EDF по условию
Пусть AD = CF = х, тогда:
АС = СD + х
DF = СD + х
Отсюда: АС = DF
Следовательно, ΔАВС = ΔDЕF по стороне и прилежащим к ней углам.
В равных треугольниках соответствующие углы равны, следовательно, ∠ABC = ∠DEF, что и требовалось доказать.