Объяснение:
Воспользуемся формулой расстояния между двумя точками А и B на координатной плоскости с координатами А(х1;у1) и B(х2;у2):
|AB| = √((х1 - х2)² + (у1 - у2)²).
1) Найдем расстояние между точками A(-6;0) и B(0;8):
|AB| = √((-6 - 0)² + (0 - 8)²) = √((-6)² + (-8)²) = √(6² + 8²) = √(36 + 64) = √100 = 10.
Следовательно, расстояние между точками A(-6;0) и B(0;8) равно 10.
2) Найдем расстояние между точками M(8;0) и N(0;-6):
|MN| = √((8 - 0)² + (0 - (-6))²) = √((8)² + (-6)²) = √(8² +6²) = √(64 + 36) = √100 = 10.
1. 12 * 7 = 84 см"
2. 24 см
3.49√2 см
4. -----------
5.24√2 см²
Объяснение:
1. Тут и так понятно)
2. Высота поделила основу пополам,тем самым поделив треугольник на 2 маленьких.По теореме Пифагора квадрат гипотенузы = сумме квадратов катетов. Найдём катет( половину основы треугольника).
225 = 81 +
= 225 - 81 = 144
х = = 12 см
Теперь узнаем длинну основы: 12 +12 = 24 см
3.Площадь ромба через его сторону и угол
S = a²·sin(β) = (7√2)²·sin(135°) = 49*2 * 1/√2 = 49√2 см
4. Не знаю, прости((((
5.Дано: трапеція КМРТ, МР=7 см, КТ=9 см, ∠Т=45°.
Проведемо висоту РН. Розглянемо ΔРТН - прямокутний.
∠Т=45°, тоді ∠ТРН=90-45=45°, тобто ΔРТН - рівнобедрений.
Нехай РН=ТН=х см, тоді за теоремою Піфагора
х²+х²=6²; 2х²=36; х²=18; х=√18=3√2; РН=3√2 см.
S=(МР+КТ):2*3√2=(7+9)/2*3√2=24√2 см²