М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Drftdsrx
Drftdsrx
07.03.2022 18:21 •  Геометрия

Ребро Куба равно 4. Найдите координаты всех вершин куба

👇
Открыть все ответы
Ответ:
надя644
надя644
07.03.2022

Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.

а) найдите площадь полной поверхности этой призмы;

б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;

в) вычислите площадь этого сечения;

г) найдите угол между плоскостью сечения и плоскостью нижнего основания;

д) постройте линию пересечения секущей плоскости верхнего основания.

рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.

И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:

площадь основания

Теперь найдем площади боковых граней, а затем и площадь полной поверхности

нашли полную поверхность

4,7(97 оценок)
Ответ:

Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса.

В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса.

Плоскость, параллельная плоскости основания конуса, пересекает конус по кругу, а боковую поверхность — по окружности с центром на оси конуса.

Плоскость, параллельная одной из образующих конуса, пересекает его поверхность по параболе.

Если секущая плоскость пересекает обе полости конуса, получаем гиперболу.

Вот столько видов сечений конуса.

4,7(69 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ