Пусть основания a и b известно, что a + b = 21*2 = 42
Представьте, что у трапеции боковые стороны такие же 13 и 15 и углы при основаниях такие же, но основания КОРОЧЕ, таким образом, что биссектрисы всех 4 углов пресекаются в одной точке. В этом случае сумма оснований равна сумме боковых сторон, поскольку в такую трапецию можно вписать окружность. Ясно, что если верхнее основание короче на х, то и нижнее - тоже на х (вобщем-то мы так и строили эту трапецию, просто отсекли её от первоначальной с прямой линии, параллельной боковой стороне).
Таким образом, a - х + b - х = 13 + 15; 42 - 2*x = 28; x = 7;
Это и есть ответ. :)
Исходная трапеция получается просто если и верхнее и нижнее основания трапеции с боковыми сторонами 13 и 15 и основаниями a - 7 и b - 7 "удленить" на 7, точки пересечения биссектрис при этом раздвинуться на столько же.
Я не стал объяснять, что точки пересечения биссектрис лежат на средней линии. Это очевидно, но на всякий случай поясню - точка пересечения 2 биссектрис - это центр окружности, касающейся боковой стороны и 2 параллельных оснований. Поэтому эта точка РАВНОУДАЛЕНА от оснований.
Эту задачу я решал тут НЕСЧЕТНОЕ число раз, см я часть текста оттуда перенес.
Пусть основания a и b известно, что a + b = 21*2 = 42
Представьте, что у трапеции боковые стороны такие же 13 и 15 и углы при основаниях такие же, но основания КОРОЧЕ, таким образом, что биссектрисы всех 4 углов пресекаются в одной точке. В этом случае сумма оснований равна сумме боковых сторон, поскольку в такую трапецию можно вписать окружность. Ясно, что если верхнее основание короче на х, то и нижнее - тоже на х (вобщем-то мы так и строили эту трапецию, просто отсекли её от первоначальной с прямой линии, параллельной боковой стороне).
Таким образом, a - х + b - х = 13 + 15; 42 - 2*x = 28; x = 7;
Это и есть ответ. :)
Исходная трапеция получается просто если и верхнее и нижнее основания трапеции с боковыми сторонами 13 и 15 и основаниями a - 7 и b - 7 "удленить" на 7, точки пересечения биссектрис при этом раздвинуться на столько же.
Я не стал объяснять, что точки пересечения биссектрис лежат на средней линии. Это очевидно, но на всякий случай поясню - точка пересечения 2 биссектрис - это центр окружности, касающейся боковой стороны и 2 параллельных оснований. Поэтому эта точка РАВНОУДАЛЕНА от оснований.
Эту задачу я решал тут НЕСЧЕТНОЕ число раз, см я часть текста оттуда перенес. К тому же вы 2 раза её опубликовали... зачем...
1. Прямые АВ₁ и DC скрещивающиеся
2. DC ║ (AA₁B₁)
3. АВ₁ ║ (DСС₁)
Объяснение:
1.
Признак скрещивающихся прямых:
если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.