1) Пусть a и b - два данных вектора. Если вектор р представлен в виде p=xa+yb, где х и у -некоторые числа, то говорят, что вектор р разложен по векторам a и b. Числа х и у называются коэффициентами разложения.
2) Отложим от точки О два единичных вектора, направление которых совпадает с направлениями координатных осей. Эти векторы обозначаются i и j и называются координатными векторами. Так как координатные вектора не коллинеарны, то любой вектор р можно представить в виде p=xi+yj. Числа х и у называются координатами вектора в данной системе координат. Для координат векторов справедливы следующие свойства: 1. Каждая координата суммы векторов равна сумме соответствующих координат. 2. Каждая координата разности векторов равна разности соответствующих координат. 3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число. 4. Каждая координата вектора равна разности соответствующих координат его конца и начала.
Хорды АВ=СД=8, проводим радиусы АО=ВО=СО=ДО, треугольник АОВ=треугольник СОД по двум сторонам и углу между ними уголАОВ=уголСОД (уголАОВ и уголСОД-центральные углы, уголАОД=дуге АВ, уголСОД=дуге СД, равные хорды отсекают равные дуги, дуга СД=дуге АВ), проводим высоты ОН на АВ и ОК на СД, в равных треугольниках высоты проведенные на основание равны ОН=ОК, НК-расстояние=6, ОН=НК=1/2НК=6/2=3, ОН=ОК=медианам, биссектрисам, треугольники равнобедренные, АН=ВН=1/2АВ=8/2=4, треугольник АНО прямоугольный, АО=корень(АН в квадрате+ОН в квадрате)=корень(16+9)=5=радиус
2) Отложим от точки О два единичных вектора, направление которых совпадает с направлениями координатных осей. Эти векторы обозначаются i и j и называются координатными векторами. Так как координатные вектора не коллинеарны, то любой вектор р можно представить в виде p=xi+yj. Числа х и у называются координатами вектора в данной системе координат.
Для координат векторов справедливы следующие свойства:
1. Каждая координата суммы векторов равна сумме соответствующих координат.
2. Каждая координата разности векторов равна разности соответствующих координат.
3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.
4. Каждая координата вектора равна разности соответствующих координат его конца и начала.