ответ: ФТЛ? ДКР?
Объяснение:
#include <iostream>
using namespace std;
int main() {
int a, b, c;
cin >> a >> b >> c;
if (a == b && a == c && b == c) {
cout << 3;
}
if (a == b && a != c && b != c) {
cout << 2;
}
if (a != b && a == c && b != c) {
cout << 2;
}
if (a != b && a != c && b == c) {
cout << 2;
}
if (a != b && a != c && b != c) {
cout << 0;
}
return 0;
}
а вообще, я сам не знаю как эту задачу решить... Т_Т
АВ перпендикулярна плоскости альфа
АС, АВ - наклонная
Угол АСВ=30°
Угол АДВ=60°
Радиус окружности=√3
Найти: АВ
Т.к. АВ перпендикулярна плоскости альфа, то В проекция точки А на плоскости альфа, ВС и ВД - проекция АС и АД
На плоскости альфа, соответственно ВС принадлежит плоскости альфа
ВД принадлежит плоскости альфа, т.к. АВ перпендикулярна плоскости альфа,то ВС перпендикулярна плоскости альфа, ВД перпендикулярна плоскости альфа, значит АВ перпендикулярна ВС, АВ перпендикулярна ВД, и треугольники АВС и АВД - прямоугольные
Треугольник АВС:АВ/АС=sin угла АСВ
АС=АВ/sin угла АСВ=АВ/sin30°=АВ/1/2=2АВ
Треугольник АВД=АВ/АД=sin угла АДВ
АД=АВ/sin угла АДВ=АВ sin60°=AB/√3/2=2/√3AB
Треугольник АСД - прямоугольный (угол АСВ+угол АДВ=90°)
Значит: R=1/2СД, тогда CД=2*√3=2√3
По теореме Пифагора:
Треугольник АСД=АС²+АД²=СД²
2АВ²+2/√3АВ²=2√3²
4АВ²+4/3АВ²=12
16/3АВ²=12 |:3/16
АВ²=9/4
АВ=3/2
ответ: АВ=3/2
Объяснение:
45°
Объяснение:
152. Дано: ABCDA₁B₁C₁D₁ - прямоугольный параллелепипед;
AB = 5; AD = 4; AA₁ = 3
Найти: ∠ABD₁.
Прямоугольный параллелепипед — это параллелепипед, у которого все грани прямоугольники.1. Рассмотрим ΔAA₁D₁ - прямоугольный.
Противоположные сторона прямоугольника равны.⇒ AD = A₁D₁
По теореме Пифагора:
2. Рассмотрим ΔABD₁.
AB ⊥ AD
Теорема о трех перпендикулярах: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.⇒ ΔABD₁ = прямоугольный.
AB = BD₁= 5
⇒ ΔABD₁ - равнобедренный.
Углы при основании равнобедренного треугольника равны.⇒ ∠BD₁A = ∠ABD₁
Сумма острых углов прямоугольного треугольника равна 90°.⇒ ∠BD₁A = ∠ABD₁ = 90°:2 = 45°
153. Дано: ABCDA₁B₁C₁D₁ - прямоугольный параллелепипед;
АВ = 4; AD = 3; AA₁ = 5.
Найти: ∠DBD₁
Рассмотрим ΔADB - прямоугольный.
По теореме Пифагора:
Рассмотрим ΔDD₁B - прямоугольный.
AA₁ = DD₁ = 5 (противоположные стороны прямоугольника AA₁D₁D)
BD = DD₁=5
⇒ ΔDD₁B - равнобедренный.
Углы при основании равнобедренного треугольника равны.⇒ ∠DBD₁ = ∠DD₁B
Сумма острых углов прямоугольного треугольника равна 90°.⇒ ∠DBD₁ = ∠DD₁B = 90° :2 = 45°