проводим касательную, проводим радиусы в точки касания, и соединяем центры. кроме того, из центра меньшей окружности проводим пепендикуляр к радиусу большей окружности, проведенном у точку касания. этот перпендикуляр равен общей касательной (там прямоугольник: получился прямоугольный треугольник со сторонами d = корень(80) - линия центров, это гипотенуза треугольника, (r - r), и второй катет в качестве искомого расстояния.
x^2 = d^2 - (r - r)^2;
по условию r - r = 4; x^2 = 80 - 16 = 64; x = 8;
OM делит AB пополам пересекая её. Так как части AB равны, то OM перпендикулярна AB. При этом продолжение OM пересекает и касательную, которая в свою очередь будет параллельна AB, т.к. она касается лишь одной точки и эта точка, точка пересечения OM.
Доказать это можно так:
OM перпендикулярна AB и касательной, значит образованные углы равны 90градусов, из этого следуют три признака док-ва параллельности:
-по на крест лежащим углам при AB, касательной и секущей OM
-по соответственным углам при AB, касательной и секущей OM
- по равносторонним углам при AB, касательной и секущей OM
Скорее всего вас в школе учили по-другому делать, но надеюсь хоть на мысль-то натолкнул:)