Даны вершины А(5; 3), В(-11; -9), С(-4; 15) треугольника АВС. Требуется найти: а) уравнение стороны АС; б) длину высоты, проведенной из вершины А; в) величину угла В (в радианах).
Треугольник АВС равнобедренный, значит BD биссектриса, медиана и высота, т.е. AD = DC и ΔABD прямоугольный, а DE - его высота.
По свойству пропорциональных отрезков в прямоугольном треугольнике, квадрат катета равен произведению гипотенузы и проекции этого катета на гипотенузу:
BD² = BE · AB
AD² = AE · AB
Пусть х - коэффициент пропорциональности, тогда
АЕ = 4х, ВЕ = 9х, а АВ = 13х.
BD = √(9х · 13х) = 3х√13
AD = √(4x · 13x) = 2x√13
AC = 2AD = 4x√13.
Так как BD + AC = 14, то
3x√13 + 4x√13 = 14
7x√13 = 14
x = 2/√13 = 2√13 / 13 см
AB = BC = 13x = 2√13 см
AC = 4x√13 = 4 · 2√13/13 · √13 = 8 см
Pabc = AB + BC + AC = 2AB + AC = 2 · 2√13 + 8 = 4(√13 + 2) см
Треугольник АВС - прямоугольный, ∠В=90°, поскольку у в прямоугольнике все углы =90° Сумма углов любого треугольника 180°, в т.ч. и нашего треугольника АВС. ∠А+∠В+∠С=90° Поскольку по условию задания CAB=2*ACB, значит в треугольнике АВС ∠А=2*∠С, выходит 2*∠С+90°+∠С=180° 3*∠С=90° ∠С=30°. Значит ∠А=2*∠С=2*30°=60°. Рассмотрим прямоугольный треугольник АВС дальше: АС-гипотенуза, АВ и ВС - это катеты cos ∠А=АВ/АС sin ∠А=ВС/АС
cos ∠А=cos 60°=1/2=0,5 sin ∠А=sin 60°=√3/2=0,5√3
cos ∠А=АВ/АС 0,5=АВ/АС, отсюда АВ=0,5АС=0,5*10см=5см
sin ∠А=ВС/АС 0,5√3=ВС/АС, отсюда ВС=0,5АС√3=0,5*10√3=5√3 см
У прямоугольника противоположные стороны равны, значит АВ=СЕ=5 см ВС=АЕ=5√3 см
Периметр равен сумме длины всех сторон прямоугольника, то есть Периметр=АВ+ВС+СЕ+АЕ Периметр=5+ 5√3+ 5+5√3 Периметр=10+10√3 Периметр=10*(1+√3) см
Треугольник АВС равнобедренный, значит BD биссектриса, медиана и высота, т.е. AD = DC и ΔABD прямоугольный, а DE - его высота.
По свойству пропорциональных отрезков в прямоугольном треугольнике, квадрат катета равен произведению гипотенузы и проекции этого катета на гипотенузу:
BD² = BE · AB
AD² = AE · AB
Пусть х - коэффициент пропорциональности, тогда
АЕ = 4х, ВЕ = 9х, а АВ = 13х.
BD = √(9х · 13х) = 3х√13
AD = √(4x · 13x) = 2x√13
AC = 2AD = 4x√13.
Так как BD + AC = 14, то
3x√13 + 4x√13 = 14
7x√13 = 14
x = 2/√13 = 2√13 / 13 см
AB = BC = 13x = 2√13 см
AC = 4x√13 = 4 · 2√13/13 · √13 = 8 см
Pabc = AB + BC + AC = 2AB + AC = 2 · 2√13 + 8 = 4(√13 + 2) см