Дано:
SABCD - правильная четырёхугольная пирамида
AB = 16 см SO - высота SO⊥(ABCD) SO = 12 см
------------------------------------------------------------------------------
Найти:
AS - ?
Так как ABCD - квадрат, тогда основание высоты AC∩BD = O, и диагональ квадрата будет равен:
AC = AB×√2 = 16 см × √2 = 16√2 см ⇒ AC = BD = 16√2 см
И сторона AO равен:
AO = OC = 1/2 × AC = 1/2 × 16√2 см = 16√2/2 см = 8√2 см
Так как ΔSOA - прямоугольный (∠SOA = 90°), тогда используется по теореме Пифагора:
SA² = SO² + AO² ⇒ SA = √SO² + AO² - теорема Пифагора
SA = √(12 см)² + (8√2 см)² = √144 см² + 128 см² = √272 см² = √16×17 см² = 4√17 см
ответ: SA = 4√17 см
P.S. Рисунок показан внизу↓
0,8
Объяснение:
1) Косинус - это отношение прилежащего катете к гипотенузе.
2) Прилежащим катетом в данном случае является высота, проведённой к основанию и боковой стороной (в данном случаем гипотенузой).
3) Так как треугольник равнобедренный, то высота ВF, опущенная из вершины В на основание АС, делит это основание на 2 равных отрезка:
АF = FC = 12 : 2 = 6 см.
4) По теореме Пифагора находим высоту BF:
BF^2 = AB^2 - AF^2 = 10^2 - 6^2 = 100 - 36 = 64
BF = √ 64 = 8 см.
5) Находим косинус угла АВF, образованного высотой ВF и боковой стороной АВ:
cos ∠ АВF = ВF : АВ = 8 : 10 = 0,8
ответ: 0,8