1.В равнобедренном треугольнике углы при основании равны.
Рассмотрим равнобедренный треугольник ABC с основанием ВС и докажем, что ∠ В = ∠ С. Пусть AD — биссектриса треугольника ABC . Треугольники ABD и ACD равны по первому признаку равенства треугольников (АВ = АС по условию, AD — общая сторона, ∠ 1 = ∠ 2, так как AD — биссектриса). Из равенства этих треугольников следует, что ∠ В = ∠ С. Теорема доказана.
2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
3.В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
4.В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
5.Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны
Нарисуй рисунок,и все будет понятно.
1) В зависимости от количества равных сторон треугольники бывают: равнобедренные, равносторонние, разносторонние.
2)Равнобедренный треугольник - это треугольник, у которого две стороны равны.
Равносторонний треугольник - это треугольник, у которого все стороны равны.
Разносторонним называется треугольник, у которого все три стороны не равны.
3)Боковыми называются равные стороны равнобедренного треугольника.
4) Основание - третья сторона равнобедренного треугольника, не равная боковым сторонам.
5) В равнобедреннрм треугольнике углы при основании равны.
6)Биссектриса равнобедренного треугольника, проведенная к основанию, является и медианой и высотой.
7) Углы треугольника, лежащие против равных сторон, равны.
8) Все углы в равностороннем треугольнике равны.
9) В равностороннем треугольнике высота, проведённая к любой стороне, является также его медианой и биссектрисой.
s=2х*5х=400
10х в квадрате= 400
х= корень из 20
2 корня из 20 - первая сторона
5 корней из 20 - вторая сторона
периметр равен 14 корней из 20