Решение (доказательство) должно быть полным, с пояснениями, которые опираются на уже изученные факты, формулы, определения, аксиомы, теоремы и следствия из них. Во всех заданиях необходимо выполнить рисунок. Задание 1 ( ).
Точка О является пересечением отрезков АВ и CD и серединой отрезка АВ. ∠ САО = ∠ DBO. Докажите, что СO = OD.
Задание 2 ( ).
Отрезки AB и CD пересекаются в точке Е. АЕ = ЕВ, СЕ = ED. Докажите, что Δ АСЕ = Δ BDE.
Задание 3 ( ).
Луч ОС делит ∠ AOB пополам, AO = BO. На прямой CO лежит точка F. Докажите, что треугольники АОF и ВОF равны.
image3.png
Задание 4 ( ).
Точки D, C принадлежат прямой a, точки F и Т принадлежат прямой b. Отрезки DT и FC пересекаются в точке О так, что DO = OT, СO = OF. Докажите, что прямые a и b параллельны. Для доказательства воспользуйтесь теоремой: если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то прямые параллельны.
Задание 5 ( ).
Вершины B и D треугольников ABC и ADC лежат в разных полуплоскостях относительно прямой АС, АВ = ВС, AD = DC. Точка К лежит на луче BD так, что точка D лежит между точками B и K. Докажите, что треугольники ADK и СDK равны.
Так как прямые, разделяющие треугольник на равные по площади фигуры, параллельны стороне, то они делят его на 1 треугольник и 4 трапеции. Площадь каждой из получившихся фигур, а, значит, и площадь треугольника, по условию равна 1/5 площади исходного треугольника. Площадь правильного треугольника находят по формуле S=(a²√3):4 S=(100√3):4=25√3 Тогда площадь треугольника, периметр которого нужно найти, равна S:5= 5√3 Найдем его сторону из формулы площади правильного треугольника: 5√3=(a²√3):4 20=a² a=√20=2√5 см Р=3*2√5=6√5
Так как прямые, разделяющие треугольник на равные по площади фигуры, параллельны стороне, то они делят его на 1 треугольник и 4 трапеции. Площадь каждой из получившихся фигур, а, значит, и площадь треугольника, по условию равна 1/5 площади исходного треугольника. Площадь правильного треугольника находят по формуле S=(a²√3):4 S=(100√3):4=25√3 Тогда площадь треугольника, периметр которого нужно найти, равна S:5= 5√3 Найдем его сторону из формулы площади правильного треугольника: 5√3=(a²√3):4 20=a² a=√20=2√5 см Р=3*2√5=6√5
Площадь каждой из получившихся фигур, а, значит, и площадь треугольника, по условию равна 1/5 площади исходного треугольника.
Площадь правильного треугольника находят по формуле
S=(a²√3):4
S=(100√3):4=25√3
Тогда площадь треугольника, периметр которого нужно найти, равна
S:5= 5√3
Найдем его сторону из формулы площади правильного треугольника:
5√3=(a²√3):4
20=a²
a=√20=2√5 см
Р=3*2√5=6√5