1. Обозначим тот самый острый за х. Тогда сумма остальных равна 8х. Значит сумма всех четырех равна х+8х=9х=360. Отсюда х=40. Смежный с ним будет 180-40=140. И два оставшиеся - вертикальные. ответ: 40, 140, 40, 140.
2. Если сумма углов первой пары составляет 2/3 суммы другой пары, то соответственно, сумма второй пары составляет 3/2 суммы первой. За х обозначим сумму первой пары. Тогда 3х/2 - сумма второй пары. Опять-таки сумма всех 4 углов равна х+3х/2=5х/2=360. Отсюда 5х=720, значит х=144. Значит один из этих вертикальных равен 72. Ему смежный 108. ответ: 72, 108, 72, 108.
1. 4) такого тр-ка не существует, потому-что 5+9<15, а с таким отношением тр-ник построить нельзя. 2. Пусть боковые стороны будут a=х и b=х-3. Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние: х²-10²=(х-3)²-5², х²-100=х²-6х+9-25, х=14, а=14 см, b=14-3=11 см, c=5+10=15 cм. Р=14+11+15=40 см. ответ: б) 40 см. 3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3. АВ=4√3/√3=4 см. Периметр ромба: Р=4АВ=16 см. ответ: а) 16 см.
Смежный с ним будет 180-40=140. И два оставшиеся - вертикальные.
ответ: 40, 140, 40, 140.
2. Если сумма углов первой пары составляет 2/3 суммы другой пары, то соответственно, сумма второй пары составляет 3/2 суммы первой.
За х обозначим сумму первой пары. Тогда 3х/2 - сумма второй пары.
Опять-таки сумма всех 4 углов равна х+3х/2=5х/2=360. Отсюда 5х=720, значит х=144. Значит один из этих вертикальных равен 72.
Ему смежный 108.
ответ: 72, 108, 72, 108.